The Development of a Bubble Rising in a Viscous Liquid

نویسندگان

  • L. Chen
  • S V. Garimella
  • J. A. Reizes
  • E. Leonardi
چکیده

The rise and deformation of a gas bubble in an otherwise stationary liquid contained in a closed, right vertical cylinder is investigated using a modified volume-of-fluid (VOF) method incorporating surface tension stresses. Starting from a perfectly spherical bubble which is initially at rest, the upward motion of the bubble in a gravitational field is studied by tracking the liquid–gas interface. The gas in the bubble can be treated as incompressible. The problem is simulated using primitive variables in a control-volume formulation in conjunction with a pressure–velocity coupling based on the simple algorithm. The modified VOF method used in this study is able to identify and physically treat features such as bubble deformation, cusp formation, breakup and joining. Results in a two-dimensional as well as a three-dimensional coordinate framework are presented. The bubble deformation and its motion are characterized by the Reynolds number, the Bond number, the density ratio, and the viscosity ratio. The effects of these parameters on the bubble rise are demonstrated. Physical mechanisms are discussed for the computational results obtained, especially the formation of a toroidal bubble. The results agree with experiments reported in the literature. 1. Introduction Multi-fluid systems play an important role in many natural and industrial processes such as combustion, petroleum refining, chemical engineering and cleaning. Impressive developments in the visualization of fluid structure, detailed flow-field measurements, and sophisticated numerical simulations have led to significant progress in the understanding of complex single-phase flows in recent years. For flow that consists of two or more phases, however, difficulties are still encountered on both the experimental and numerical fronts. To fully understand the behaviour of a multi-fluid system the basic micro-mechanisms encountered in isolated fluid phases as well as the interactions

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Simulation of Hydrodynamic Convection in Rising Bubble Under Microgravity Condition

In this work, rising of a single bubble in a quiescent liquid under microgravity condition was simulated. The related unsteady incompressible full Navier-Stokes equations were solved using a conventional finite difference method with a structured staggered grid. The interface was tracked explicitly by connected marker points via hybrid front capturing and tracking method. One field approximatio...

متن کامل

Numerical simulation of bubble rising in viscous liquid

An improved numerical algorithm for front tracking method is developed to simulate the rising of a bubble in quiescent viscous liquid due to buoyancy. In the new numerical algorithm, volume correction is introduced to conserve the bubble volume while tracking the bubble’s rising and deforming, and volume flux conservation based SIMPLE algorithm is adopted to solve the Navier–Stokes equation for...

متن کامل

Hydrodynamic investigation of multiple rising bubbles using lattice Boltzmann method

Hydrodynamics of multiple rising bubbles as a fundamental two-phase phenomenon is studied numerically by lattice Boltzmann method and using Lee two-phase model. Lee model based on Cahn-Hilliard diffuse interface approach uses potential form of intermolecular forces and isotropic finite difference discretization. This approach is able to avoid parasitic currents and leads to a stable procedure t...

متن کامل

Experimental investigation of bubble growth and detachment in stagnant liquid column using image – based analysis

An experimental study has been carried out to characterize bubble formation, growth, and detachment mechanisms in a stagnant liquid column. Both bubble frequency and bubble detachment size were measured in different gas flow rates, injector diameters and orientations, submergence height, and liquid properties. Experiments were performed for air injection flow rate ranges between 200 mlph and 12...

متن کامل

A Bubble Rising in Viscous Fluid: Lagrange’s Equations for Motion at a High Reynolds Number

A gas bubble rising steadily in a pure liquid otherwise at rest at a moderate Weber number is, to a good approximation, of oblate spheroidal shape. Previous analytical calculations of that shape at high Reynolds numbers have ignored viscosity. This paper shows that if one includes viscosity by incorporating Rayleigh’s dissipation integral in Lagrange’s equations, then the speed of rise is that ...

متن کامل

Ellipsoidal model of the rise of a Taylor bubble in a round tube

The rise velocity of long gas bubbles (Taylor bubbles) in round tubes is modeled by an ovary ellipsoidal cap bubble rising in an irrotational flow of a viscous liquid. The analysis leads to an expression for the rise velocity which depends on the aspect ratio of the model ellipsoid and the Reynolds and Eötvös numbers. The aspect ratio of the best ellipsoid is selected to give the same rise velo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013